Indistinguishability Obfuscation from Bilinear Maps and LPN Variants

Friday, September 27, 2024 - 10:30am to 12:00pm
Location: 
G-882 Hewlett Room
Speaker: 
Seyoon Ragavan (MIT)

We construct an indistinguishability obfuscation (IO) scheme from the sub-exponential hardness of the decisional linear problem on bilinear groups together with two variants of the learning parity with noise (LPN) problem, namely large-field LPN and (binary-field) sparse LPN. This removes the need to assume the existence pseudorandom generators (PRGs) in $\mathsf{NC}^0$ with polynomial stretch from the state-of-the-art construction of IO (Jain, Lin, and Sahai, EUROCRYPT 2022). As an intermediate step in our construction, we abstract away a notion of structured-seed polynomial-stretch PRGs in $\mathsf{NC}^0$ which suffices for IO and is implied by both sparse LPN and the existence of polynomial-stretch PRGs in $\mathsf{NC}^0$.

As immediate applications, from the sub-exponential hardness of the decisional linear assumption on bilinear groups, large-field LPN, and sparse LPN, we get alternative constructions of (a) fully homomorphic encryption (FHE) without lattices or circular security assumptions (Canetti, Lin, Tessaro, and Vaikuntanathan, TCC 2015), and (b) perfect zero-knowledge adaptively-sound succinct non-interactive arguments (SNARGs) for NP (Waters and Wu, STOC 2024).

Joint work with Neekon Vafa (MIT) and Vinod Vaikuntanathan (MIT).